
AD-A79 987 MARYLAND UNIV COLLEGE PARK COMPUTER VISION LA8 F/S 9/3
PARALLEL OPERATIONS ON 3IARY IMAGES.(U)
NOV 79 R KLETTE AFOSR-77-3271

UNCLASSIFIED TR-822 AFOSR-TR-80-0078 ML

molnlIIIIIIiIIIEIIIE IIIEEI

UNWVERSiTY OF MARYLAND

COMPUTER SCIENCE CENTER
COLLEGE PARK, MARYLAND

7 ,I

80 1 29 012,

r o.~ 79

PARALL.EL WiRATIONS ON BINARY IM S.

~ io Renhard Kiettee

_r I - .l

tuer V3islon oratory
Computer Science Center JAN30 110
University of Maryland
College Park, MD 20742LSU U Lb

E
" Approvedforpublicorelease;.

J distribution unlimited.

ABSTRACT ~ 'i4
It is a well-known fact that parallel logical operations

and shifts are useful for speeding up certain computational
tasks in binary image processing. A theoretical model for
computation is given using these operations as basic instruc-
tions. Some examples demonstrate the utility of such a parallel
processing system for fast solutions, e.g., the recognition of
rectangles, squares, and isosceles right triangles can be done
within time O(logN) for input images of size NxN.

AIR FORCE OFFICE OF SCIENTIFIC RESARH (ASC)
NOTICE OF ':" 7 T...

I t ITTA L TO DDCThis tC. v,,, rcvie1 and is

£ , v~n 2C L ; ,, ": .:.,: IA." 1 - i)J0-12 (7b).
A. D. . uo32
Technica Inf0-"- tion Officer

The support of the U.S. Air Force Office of Scientific Research
under Grant AFOSR-77-3271 is gratefully acknowledged, as is the
help of Kathryn Riley. The author also thanks Prof. Azriel
Rosenfeld for his careful reading of the manuscript.

*Permanent address: Sektion Mathematik, Friedrich-Schiller-
Universitit, DDR-69 Jena, Universititshochhaus 17.OG, German
Democratic Republic.

il%

1. Introduction

In this paper, a binary image is a pattern of l's on a

background of O's, filling out a scanning field of a certain

size NxM. In the binary image

X = (X ij) i=0,l,...,N-l; j=0,...,M-l

X..=0 means that (i,j) is a background point, and X..=l that

(i,j) is an object point. It is well known (see, e.g., (1])

that many operations on binary images such as edge detection,

shrinking, expanding, or projection can be performed in parallel.

The following simple example of edge detection demonstrates this

computational approach:

Assume that all points (i,j) with Xi =1 represent a certain

object obtained as a result of thresholding a gray level image

of this object. The contour of the object is defined to be the

set of all points (i,j) with X. =1, such that in the neighbor-1J

hood of (i,j) there is at least one point (k,t) with XkZ=O. Let

us use the 4-neighborhood

for points p - (i,j) in such a. binary image. Then, for a binary

image X the following procedure computes an edge image X* in

which X.=l iff the point (i,j) is a contour point in X (cp.
El,2]):

1. Y - shift X one column to right;

2. Z - AND(X,Y) for all points of X and Y in parallel;

I'.

3. Y - shift X one column to left;

4. Z - AND(Z,Y) for all points of Z and Y in parallel;

5. Y - shift X one row up;

6. Z - AND(Z,Y) for all points of Z and Y in parallel;

7. Y - shift X one row down;

8. Z - AND(Z,Y) for all points of Z and Y in parallel;

9. Z - NON(Z) for all points of Z in parallel;

10. X*- AND(X,Z) for all points of X and Z in parallel.

Thus, the computation of X* = edge(X) can be done within 10

steps, independently of the size NxM of the binary image X,

where in each step a logical operation or a shift will be per-

formed on the whole image field in parallel. On the other hand,

using a sequential computer, the computation of X* requires

O(NxM) computational steps.

Using CCD or optical techniques, such a parallel procedure

can be implemented in hardware [3,4]. However, our considera-

tions are from a theoretical standpoint and are not concerned

with questions of implementation.

The paper is organized as follows: In Section 2 the compu-

tation model for parallel operations on binary images is defined,

following the definition in [2]. In Sections 3, 4, and 5 we

discuss some examples of binary image processing demonstrating

the utility of the available parallelism for fast solutions.

Section 3 discusses local operations; Section 4 the recognition

of rectangles, squares, and isosceles right triangles, and

1.

Section 5 the computation of area and perimeter for a simply

connected object [1].

lacslon For

Justiiatlar

DistributionL_

i Availabi.i _.Codes
Avail id/or

Dst speclal

1~

2. Definition of the PBS

For reasons of simplicity we will consider binary images

of size N=M-2P , for integer pk2. This choice is motivated by

the fact that a power of 2 is optimal for the image size in

some sense: Binary image transforms via the image processing

computormied in this paper require in many cases the same time

!qciplexftyi.for all sizes N, 2P<4N-2p + , for any given positive

iiegerp.

Let B be the set of all binary images of size NxN. For

* XeS, X. or X(i,j) denotes the value of the binary image X at

.-the point (i,j). Points (i,j) outside the scanning field

2{,l,.. ,N-l}2 are always assumed to have value 0.

Our model for computation represents a hybrid system of a

vector machine [5] with a matrix machine (6]. Generally speak-

ing, the matrix machine computes binary image transforms, and

the operation of this two-dimensional machine is controlled by

switching in a vector machine. Both machines are parallel pro-

cessors working as single-instruction-multiple-data (SIMD)

computers. We denote our model for computation by PBS (paralleles

Binirbildverarbeitungssystem).

The PBS potentially makes use of countably many registers

of three types:

1 In [2] this system was called IPC, but we think that the deno-
tation PBS is more appropriate. In fact, the definition of the
PBS fully agrees with the IPC definition given in (2].

1%

(i) vector registers A,B,C,...

(ii) index registers I,J,K,...

(iii) matrix registers XY,Z,...

All registers may be subscripted.

Vector registers store one vector of the set V:-{0,1}N at

a time. For simulating operations on nonnegative integers, we

adopt the traditional convention of writing the sequence of bits

(elements of {0,1}) from right to left. Hence, for the actual

value <A> of a vector register A the relation O <A>i 2N-I is

always true. Furthermore, we can use vector registers for simu-

lating operations on negative integers or on real numbers. In

such cases, we need special conventions for the meaning of some

bit positions. Note that the length N of a stored vector is

identical to the size N of the binary images.

Index registers store one vector of the set O*O* 0* of

length log N+1 at a time. Hence, for the actual value <I> of

an index register I we have <I>E{0,1,2,4,...,N}, at any time.

Usually these auxiliary registers will be used for storing shift

distances, or for loop count1ng.

Matrix registers store one binary image XEB at a time. That

is, each register of this type stores exactly N2 bits in a two-

dimensional square array. For example, in the uppermost row of

such a register X the N bits

X0 0 X0 1 X0 2 * * X 0,N. 1

are stored in this order.

I.

The instructions for a PBS program are drawn from the in-

struction set given in Table 1. In what follows, we will con-

sider each instruction to have a cost of one unit of time

(uniform cost criterion). The time of a computation is its

length (number of executed basic instructions). For example, we

may utilize while-loops, or other bitwise parallel Boolean

operations such as V and@. However, it should be clear how

to translate such constructs into the austere language described

in Table 1 at a cost of a constant factor in time.

Note that our instructions guarantee that the contents of

a vector register are never assigned to an index register and

vice versa. Any index register contains at most one 1 at any

time.

We write programs in an Algol-like notation, cp. [7]. Be-

cause it is not necessary that our language should be implemented,

we take liberties with the programming language.

A program for the PBS is a sequence of instructions. Our

programs are deterministic. On the top of a program we enumerate

those registers which will be used during the computation. At

the start of a program all non-input registers are identically 0.

For example, the program for computing an edge image (cp.

the example in the Introduction) has the form

begin index I; image X,Y,Z; read X; int I=1;

Y:=X-1I; Z:=XAY; Y:=X-I; Z:-ZAY;

Y:=XtI; Z:=ZAY; Y:X+I; Z:=ZAY;

Z:=Z; Y:=XAZ; print Y

end

Instruction Function

int A=m; int 1=2 n; constant vectors or binary images Anto
age X- registers A,I,X, esp. <A)-m, <I>=2and X-X 0 B;

read A; read X; input statements for vector and
matrix registers;

print A; print X; output statements for vector and

matrix registers;

A:-B; I:=J; X:=Y; direct assignments;

A:=B; A:=BAC; bitwise parallel Boolean operations,
X:Y=; X:=YAZ;
AK:B-I; A:=BI; shift operations, shift distances given
I:J-; I:=J; by <I> for vector and matrix register,
X:=YI; X:=Y-I; for index registers the shift distance
X:=YtI; X:=Y+I; is restricted to one bit position,

the bits shifted out are discarded,
the vacated positions are filled with
O's;

if A{}0 then...else.. .fi; test instructions for vector and
index registers;

if I(}0 then.. .else ...fi;

X:=A; A into the lowest row of X, the
vacated positions in X are filled
with O's;

A:=X; the lowest row of X into A.

Table 1. Basic PBS Instructions.

St
.

,.Mon

According to a given program the PBS computes a certain

function

f: V x an 2 Vm 1 x 8m 2.

Possible interpretations of such functions are listed in Table

2. Such a function belongs to the complexity class

PBS - TIME(T(N))

iff this function can be computed on PBS within time O(T(N)).

In this, the time complexity is taken as the maximum complexity

over all inputs (worst-case complexity). E.g., we have seen

that the function edge:B- B belongs to the complexity class

PBS-TIME(l).

According to Table 1, test instructions for matrix registers

(Is X identical to 0 in all bit positions, or not?) may be per-

formed by a PBS subroutine within time O(log N). To see this,

let

zero(X):=if X-0 then 1 else 0 fi.

The function zero:BV belongs to the complexity class

PBS-TIME(log N):

begin vector A; index I; image X,Z;

int I=N/2; read X;

while I0 do

Z:=X+I; X:=XVZ; 1:-I- od;

end if A=O then print 1 else print 0 fi;

I end

,,

Function Fields of Application

f: 8n. . image processing

f: 8n. V feature extraction, image coding,
recognition

f: Vn. V classification, auxiliary operations

f: Vn. S image reconstruction, image decoding

Table 2. Some Function Interpretations.

II

The principle of this program is easy to understand. This

example demonstrates the utility of power-of-2 shifts using a

divide-and-conquer approach.

In the next sections we will consider some examples of

binary image transforms. These examples are selected for pre-

sentation without any special motives. We want to emphasize

the utility of the available parallelism for image processing

tasks. Some examples of binary image processing using the PBS

can be found in [2], e.g.:

1. Let number(X) be the quantity of l's in the binary

image X. This function number:B-V belongs to the class PBS-TIME

((log N) 2

2. Let proj(X) be the projection of X in the column direc-

tion, i.e., all l's in X are shifted down to the lowest row.

This function proj:-8 can be computed on PBS within time O(N).

tI

'I'

3. Local operations

Let f:8-8 be a local operator on binary images, i.e., f

is defined using a particular neighborhood, and a particular

logical function on the points in this neighborhood. For

example, the operator edge is defined using the neighborhood

x2
x3 x0 x1

x4

and the Boolean function

x0A(XV12Vx3V'4) = x0Anon(x1 X2 X3 Ax4).

In general [2], an operator f:B-B is called a local operator

of degree n iff there exists a totally ordered "shifting set"

E with card E=n, containing integer tuples, and there exists a

Boolean function f*:{O,l}n_{O,l}, with the following property:

The set E can be represented by the n-tuple C(il,jl),

(i2j2)...(nJn)], according to the totul order on E. Then,

via

f(X)(i,j) = if (i,j)E{0,1,2,...,N-I}2 then

f* ..)
(Xi+ilj+j, i+i2,j+j2' "'i+inj+jn

else 0 fi;

the operator f can be computed by using the Boolean function

f* in the environment E.

Let LOCn be the class of all local operators of degree n,

for nh0, and let LOC:= U LOC be the class of all local operators.
n=O

In [2] it was shown that

1. if n<(2N-l) 2 LOCn C LOC n+I;

2. LOCn=LOC, for all na(2N-l)2 ; and

3. the cardinality of the class LOC is equal to

22 (N-)2. [N 2N_ (N 2 2N - N+l)+(N-_) 2

From property 3 we have ii. particular that there exist operators

f 2-8 which are not in LOC.

Let fELOC be an arbitrary operator with environment

[(ilJ I) , (i2,J 2) , . . . , (in,Jn) Hand with Boolean function f*.

Then f can be computed on PBS according to the following general

program:

begin image X,ZI, Z2 ,... ,Zn; read X;

for t:=l step 1 until n do

Zt:=(X4-jt)tit od;

X:=f*(Zl,Z2,...,Z n);

print X

end

where for negative integers jt or it we use +jt-(-jt) and

tit-+(-it), respectively. This means that if n is a small

number, and if the tuples (it,it) are close to (0,0), for t =

1,2,...,n, then the local operator f can be computed on PBS

within constant time. The following examples of local operators

demonstrate this:

(i) Smoothing: Let a(X)(i,j):=X i,j+l+Xil,j+X i ,j-l+ij,

for XESB. Then, let

,,.

smooth(X)(i,j):=if(X..=l and a(X)(i,j)a2) or

(Xij =0 and a(X) (i,j) 3)

then 1 else 0 fi.

This local operation smooth:B-8 has the environment [(0,0),

(0,-l),(0,+l),(-i,0),(+i,0)] and the Boolean function

x1 [R'2x5 (x3*c4) vx2 5 (x3' 4 x3 x4)vx 2R3 4i 5 V 2x3x4R5]

Vx 4 x 5 (x 2x 3) Vx 2 x 3 (x 4 &x5) VX2 X3 X 4 X 5 *

(ii) Shrinking: We use the function a defined above.

Then, let

shrink(X)(i,j):=if Xij=1 and a(X)(i,j)=4

then 1 else 0 fi.

This local operation shrink:85. has the same environment as

smooth and the Boolean function

XIX 2X3X4X5 *

(iii) Expanding: for

expand(X)(i,j) :=if X ij=1 or (X ij=0 and a(X)(i,j)2l)

then 1 else 0 fi

we have the same environment as for smooth and the Boolean

function

x1 V7 1 (x2 Vx 3 Vx 4 Vx 5).

Thus we see that smooth, shrink, expand are functions in the

class PBS-TIME(l).I

1>

4. Some recognition problems

In this section we will consider the recognition of rectan-

gles, squares, and isosceles right triangles.

4.1 Rectangles

Let RECTQ8 be the set of all images which contain a single

solid rectangle of l's (with sides parallel to the sides of the

image) on a background of O's. Let rect:B.V be the characteristic

function of RECT. Because in the images in RECT no noise is

present the best approach for computing rect seems to be the

consideration of "significant points" in an input image XEB.

This provides a fast method for information reduction.

We will compute rect by counting the local property "corner."

Such an approach can be found in [8] using perceptrons as models

for computation.

Proposition 1. The set RECT can be recognized on PBS

within time O(log N).

Proof: We use the patterns

P1 P2 P3 P4 P5 P6 P7 P8

In a first step of the algorithm, for n=1,2,...,8 write 1 at

the corner point p of a binary image Yn iff

P2

(or a 900 rotation of this) is the place of the observed pat-

tern Pn in the input image X; at all other points of Yn write

0. An example of this operation is shown in Figure 1. This

first step is a sequence of 8 local operators and can be done

within constant time.

The input image X belongs to RECT iff each of the images

Yy 2,¥3,Y4 has exactly one point with value 1, and the images

YSY6',Y,8 are identically 0 at all points.

In the second step of the algorithm, let Y:=Y 5VY6 7VY7vY 8.

If YE0 then go to step 3; otherwise STOP with "X is not in RECT."

According to our algorithm for zero (Section 2), this step may

be performed within time O(log N).

In the third step of the algorithm, we check if all of the

images YIY 2 ,Y3,Y4 have exactly one point with value 1. If this

is true X belongs to RECT, otherwise not.

The open question for the algorithm just described is

whether there exists a PBS program which recognizes if an input

image X has exactly one point with value 1 within time O(log N).

Let

one(X):=if X has exactly one point with value 1

then 1 else 0 fi.

The following program computes the function one:BV within

O(log N) steps:

I;
I 1

input image X 0 0 0 0
1010
1110
0100

0000 0000 0000 0000

0000 10i0 1010 0000

00 0 0000 0000 1000

0 100 0000 0000 0 100

0000 0 0 0 00 00 00

0 100 0000 0000 0 100

0000 0000 0000 0000

0000 0 01000 0010 0 000

Y 5 y 6 y 7 Y8

Figure 1. Examples of Y. images.1

I.

* begin vector AB,C; index 1; &MS*e XYZ:

int IinNI?; read X; imago Y30;

while 100 do

Z:-(X'I)VX; Y:u'YV((X+I)AX);

A:=X;

if A=O then print 0

else

if Y90 then print 0

else int I=N/2; int C=O;

while 1#O do

B:-(A-I) VA; C:=CV((A-I)AA);

A:=B; 1:14'od;

if C#O then print 0

else print 1 fi;

fi;

fi;

end

After the first while-loop of this program we put the lowest

row of X into the vector register A. If in the input image X

there was any point with value 1 then A#0, otherwise we stop

with output 0 after O(log N) steps. If in the input image X there

was any column with more than one point with value 1 then YO.

The test "Y%0?" needs O(log N) steps. If Yg0, we stop with

1 1

Vi.

output 0 after O(log N) steps. Now we know that AO0 and in

each column of the input image X there was at most one point

with value 1. After the second while-loop we check the register

C. If in A at the starting point of the while-loop there was

more than one bit position with value 1 then C#0, and we stop

with output 0 after O(log N) steps. If C=O, then in the input

image X there was exactly one column with exactly one point with

value 1. We stop with output 1 after 0(log N) steps. 0

t.

4.2 Squares

Let SQUA98 be the set of all images which contain a single

solid square of l's (with sides parallel to the sides of the

image) on a background of O's. Let sua:8-*8 be the characteristic

function of SQUA.

Proposition 2. The set SQUA can be recognized on PBS within

time O(log N).

Proof: According to the relation SQUAQRECT and to Proposi-

tion I we are able to assume that the input image X is in RECT

already. The problem is to decide between squares and nonsquare

rectangles.

For the computation of squa we use the images Y .1,Y2 1Y3 ,Y4

as defined in Section 4.1. Let X:=Y1 VY2VY3VY4 ; then in X exactly

the four corners of the input rectangle are the points with value

1. In the image Y1 there is a 1 in the position of the lower

right corner of the rectangle. We spread this 1 along a diagonal

path toward the upper left corner of the image. In the image

there is a I in the position of the upper left corner of the

rectangle. We check if this 1 is on that diagonal path or not.

In the positive case we know that the rectangle is a square:

begin image YY index I;

read YI,Y 3 ; int 1=1;

while IO do

YI:-YIV((Y 1 *I)tI); I:=I-od;

Y1 :=YIAY
3 ;

if Y,00 then print 1 else print 0 fi

end

I'

This program runs within time O(log N). Note that the 1 in

the index register I is shifted out of the log N+l bit posi-

tions of I to the left after log N+l runs through the while-

loop. C

Propositions 1 and 2 show that the sets RECT and SQUA can

be decided within the same asymptotic time as is needed when

using UPCA's as models for computation [9].

LI

I,

'I1

4.3 Isosceles right triangles

Let IRTRQB be the set of all images which contain a single

solid isosceles right triangle of l's (with two sides parallel

to the sides of the image) on a background of O's. Figure 2

shows some examples of such triangles. Let irtr:8-8 be the

characteristic function of IRTR.

Proposition 3. The set IRTR can be recognized on PBS within

time O(log N).

Proof: An image X is in IRTR iff for i=,2,3,4, one of

the Yi-images marks the hypotenuse; two of the Yi-images mark

the corner points of the hypotenuse; one of the Y i-images marks

the top opposite the hypotenuse; in YIY2,Y3,Y4 there are no other

points with value 1; for j-5,6,7,8, three of the Yj-images are

identically 0, while the fourth Y -image marks the points below

or above the hypotenuse; and in this fourth Y.-image there is

no further point with value 1 (if the input image is the smallest

triangle consisting of a single 1 only the fourth Yj-image is

identically 0).

Figure 3 provides a visualization of this property. Accord-

ing to this property, the following algorithm is a decision pro-

cedure for IRTR:

Step 1. Compute the images Y1 ,Y2 1 ...,Y8 in 0(l) steps.

Step 2. Check that three images of Y5,Y6,YTY8 are identi-

cally 0; let Z be the fourth one. This may be performed within

I
tie0lo)

1

1 0 1
1 0 1 111

1 1i 011 11 i

1 ii 10 iii

1 1111 1

Figure 2. Examples of images in IRTR.

Input image X 1 1 1 1
1110

1100

1000

0001 0001 1000 0000

00 10 0000 0000 0000

0 100 0000 0000 0000
1000 0000 0000 1000

Y1 Y2 3Y4

0000 0000 0000 0000
0000 0000 0001 0000
0000 0000 001i0 0000
0000 0000 01i00 0000
Y 5 Y 6 Y7 Y 8

Figure 3. Y i-images for an IRTR image.

I

Step 3. Check that in three images of Y ,Y21Y3 ,Y4 there is

exactly one point with value 1; let Y1IY 2 ,Y3 be these three

images. This can be done within time O(log N).

Step 4. Check that Z and Y4 have the right connection to

each other, i.e., in Y there are points marked one diagonal

below or above the points which are marked in Z, and in Y4 there

is one point with value 1 less than in Z. To do this, we shift

Y4 one row up or down, compare the result with Z, using*, and

check if in this resulting image there is exactly one point with

value 1.

Step 5. Check which of Y1 ,Y2 ,Y 3 mark points in the same

area as Y4 (the corner points of the hypotenuse); let Y1 ,Y2 be

these two images. This can be done within time O(log N), using

* and zero.

Step 6. Check if the connection between the two points in

Y1 and Y2 marks the same path as Y4 within time O(log N):

a) Spread the points with value 1 in Y and Y2 in the dia-

gonal direction using power-of-2 shifts.

b) Compare Y with the resulting images using A and zero.4

Step 7. Spread the points with value 1 in Y1 and Y2 in the

row and column direction using power-of-2 shifts. Check that the

point which is marked in Y3 is a crossing point of these rows

and columns, using A and zero. This can be done within time

O(log N). C

' 1

. • - , ,, ,

Altogether, we have a decision procedure for IRTR running

within time O(log N). Possibly this procedure can be simplified

by a particular property of the Yi-images, e.g., it may be pos-

sible that we have the correct answer already after Step 6.

Such an analysis to find the fastest way (within the O(log N)

complexity) would be necessary for an implementation of this

procedure.

II
tI

-'

5. Area and perimeter

Let S be a simply connected object (1] in a binary image

X, i.e., an object without any holes. There exist several ways

to define the area and the perimeter of such an object. Conven-

tionally (1], the area of S is defined as the number of points

in S. Using this definition, using number(X) we already have the

2area of S within O((log N)) steps. If we define the perimeter

as the number of border points (using the 4-neighborhood) of S

then we can compute the perimeter as number(edge(X)) within time

O((log N) 2) too.

Now, we will define the area and the perimeter of S following

the definitions in (10]. Let

area(X) b+i-i

where b is the number of border points of S and i is the number

of interior points of S. (We assume here that i)O.) This

definition of the area of S follows the classical theorem due

to PICK (1899) on the area of any simple polygon (whose edges do

not cross each other) whose vertices are lattice points.

For the computation of area, we have b=number(edge(X)) and

i=number(edge(X)X) after O((log N)2) steps. For division by 2

we need a special agreement for the interpretation of the contents

of vector registers. To this end, we fix the point position

between the first and the second bit positions from the right

in such a register. Division by 2 represents a shift by one bit

position to the right only. Using the available Boolean opera-

tions and shifts on vector registers, addition and subtraction

can be performed within time O(log N) [5]. Thus we have:

Proposition 4. The function area can be computed on PBS

within time O((log N)
2).

For the definition of the perimeter of S, we use the follow-

ing NxN matrices P and Q:

P(i,j):-if (i,j) is a border point

then number of border points in the 8-neighborhood of

(i,j) in the horizontal or vertical direction

else 0 fi;

Q(i,j):=if (i,j) is a border point

then number of border points in the 8-neighborhood of

(i,j) in the diagonal direction

else 0 fi;

for i,j = 0,1,...,N-l. Figure 4 gives a visualization of these

two matrices P and Q. Then the perimeter of S is defined as

N-1 N-1 N-1 N-1
peri(X):= .E Z Z P(i,j) + /I- Z Z Q(i,j)].

i=0 j=0 i=0 j=0

For each (i,j) the values P(i,j), Q(i,j) are in the set {0,1,2}.

Therefore, we can represent P and Q by two binary images PIP 0

and QIQ 0 , respectively (cp. [6]), e.g., Pl(i,j)P0 (i,j) denotes

the binary representation of P(i,j). For the computation of

the matrices P and Q, i.e., for the binary images PIP 0 ,QIQ 0

'I.

input image X 00000000

0 10 1-i 0 0 0

0 1111110 0

0 0 . 1 1 1 1-1
Pri(X=8+10$/ 00 i i 1

0 0,1 1 1 1- 1 1' /
o0 0 1 1 1-1o-01111000o

0 0 1-1 0 0 0 0

matrix P 00000000

o 1 0 1-1 0 0 0
Nb \001000000

0 0 1 0 0 0 1-2
Z EP(i,j)=16=2"8 0 0
i j 0 1 0 0 0 0

oo/ o /0
00000000
0 0 1-1 0 0 0 0

matrix Q 0 0000000

0 1 0/1-1\0 0 0
V\/ \012002000 1 1 0 0 0 1-0

E ZQ(i,j)=20=2"10 o I

0 0 /1 0 0 1-1 00 00 00 0

02002000

0 0\1-.10 0 0 0

Figure 4. The matrices P and Q.

we perform four local operations on the input image X only

(cp. (10]) within constant time. Using the function number

and the addition on vector registers we get the values

EZEP(i,j) and IEZQ(i,j) within time O((log N)2). For multipli-

cation by /7 we use the convention that the first bit position

of a vector register (i.e., on the right end) indicates if the

number in this vector register is a multiple of /T or not. For

example

0 101010011 10

is the final output for the object S in Figure 4. Thus, we

have:

Proposition 5. The function peri(X)=a+b/I can be computed

on PBS within time O((log N) 2).

*1
it

6. Conclusions

We have defined a model for parallel processing (PBS) which

formalizes Boolean operations and shifts on binary images

(Boolean matrices). It was shown that power-of-two shifts are

very useful for fast programs using a divide-and-conquer approach.

The matrix registers of the model used for computation represent

bit planes of a possible hardware implementation of this system.

Using several bit planes, grayscale pictures can be encoded in

this system. In this sense the algorithms demonstrated on binary

images (local operations, recognition of geometric objects, area,

perimeter) are only small examples of problems which can be

solved using the PBS.

'il

it,

References

(1] Rosenfeld, A., and A. Kak. Digital Picture Processing.
Academic Press, New York, 1976.

(2] Klette, R. A Parallel Computer for Digital Image Processing.
EIK 15 (1979), 237-263.

[3] Schaefer, D. H. and J. P. Strong. Tse Computers. Goddard
Space Flight Center Report X-943-75-14, January 1975.

[4) Milgram, D. L., A. Rosenfeld, T. Willett, and G. Tisdale.
Algorithms and Hardware Technology for Image Recognition.
Final Report to U.S. Army Night Vision Laboratory, Fort
Belvoir, March 31, 1978.

[51 Pratt, V. R. and L. J. Stockmeyer. A Characterization of
the Power of Vector Machines. J. Computer Syst. Sci. 12
(1976), 198-227.

(6] Klette, R. Fast Matrix Multiplication by Boolean RAM in
Linear Storage. Lecture Notes in Computer Science 64 (1978),
308-314.

[71 Aho, A.V., J. E. Hopcroft, and J. D. Ullman. The Design and
Analysis of Computer Algorithms. Addison Wesley, Reading,
Mass., 1974.

18] Minsky, M and S. Papert. Perceptrons. MIT Press, Cambridge,
Mass., 1969.

[9] Dyer, C. R. Augmented Cellular Automata for Image Analysis.
Dissertation, University of Maryland, College Park, 1979.

[10] Sankar, P. V. and E. V. Krishnamurthy. On the Compactness
of Subsets of Digital Pictures. University of Maryland,
Computer Science Center, TR-587, September 1977.

"il

t utC~t~)rr LMu-. --

SECURITY CLASSIFICATION OFL T •REPORT DOCUMENTATIO " 'BREAD INSTRUCTIONS

BEFORE COMPLETING FORM

f.4tRrPOR" NUMBER GOVT ACCESSION NO S. RECIPIENT'S CATALOG NUMBER

VOSR.-TR. 80-0078
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

PARALLEL OPERATIONS ON BINARY IMAGES Interim
s. PERFORMVG ORG. REPORT NUMBER

TR-822
7. AUTNOR(@) S. CONTRACT OR GRANT NUMBER(S)

Reinhard Klette AFOSR 77-3271'

9. PERFORMING ORGANIZATION NAME AND ADDRESS / 10. PROGRAM ELEMENT. PROJECT. TASK

University of Maryland, Computer Vision AREA & WORK UNIT NUMBERS

Laboratory, Computer Science Center
College Park, MD 20742 61102F 2304/A2

It. CONTROLLING OFFICE NAME AND ADDRESS 1Z. REPORT DATE

November 1979
Air Force Office of Scientific Research/NM 13. NUMBER OF PAGES
Bolling AFB, Washington, DC 20332 32

14. MONITORING AGENCY NAME & ADDRESS(if different from Controllind Office) IS. SECURITY CLASS. (of tle report)

UNCLASSIFIED
IS. OECLASSIFICATIOR/OOWNGRAOING

SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Report)

Approved for ppblic release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered In Block 20, It different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side If neceeery and Identify by block number)

Image processing
Parallel processing
Pattern recognition
Binary images

_" ABSTRACT (Continue on reveree side If neceeeery and Identify by block number)
It is a well-known fact that parallel logical operations and shifts are use-

ful for speeding up certain compotational tasks in binary image processing. A
theoretical model for coupptation is given using these operations as basic
instructions. Some examples demonstrate the utility of such a parallel pro-

cessing system for fast solutions, e.g. the recognition of rectangles; squares,
and isosceles right triangles can be done within time B(log N), for input
mages of size triangles can be done within time 0(log N), for input images of
size NxN.

DD JAN ,13 147 UNCLASSIFIED
- 1t SECURITY CLASSIFICATION OF THIS PAGE fiel Data Entored)

